Extensions 1→N→G→Q→1 with N=C2 and Q=S3×C62

Direct product G=N×Q with N=C2 and Q=S3×C62
dρLabelID
S3×C2×C62144S3xC2xC6^2432,772


Non-split extensions G=N.Q with N=C2 and Q=S3×C62
extensionφ:Q→Aut NdρLabelID
C2.1(S3×C62) = S3×C6×C12central extension (φ=1)144C2.1(S3xC6^2)432,701
C2.2(S3×C62) = Dic3×C62central extension (φ=1)144C2.2(S3xC6^2)432,708
C2.3(S3×C62) = C3×C6×Dic6central stem extension (φ=1)144C2.3(S3xC6^2)432,700
C2.4(S3×C62) = C3×C6×D12central stem extension (φ=1)144C2.4(S3xC6^2)432,702
C2.5(S3×C62) = C32×C4○D12central stem extension (φ=1)72C2.5(S3xC6^2)432,703
C2.6(S3×C62) = S3×D4×C32central stem extension (φ=1)72C2.6(S3xC6^2)432,704
C2.7(S3×C62) = C32×D42S3central stem extension (φ=1)72C2.7(S3xC6^2)432,705
C2.8(S3×C62) = S3×Q8×C32central stem extension (φ=1)144C2.8(S3xC6^2)432,706
C2.9(S3×C62) = C32×Q83S3central stem extension (φ=1)144C2.9(S3xC6^2)432,707
C2.10(S3×C62) = C3×C6×C3⋊D4central stem extension (φ=1)72C2.10(S3xC6^2)432,709

׿
×
𝔽