Extensions 1→N→G→Q→1 with N=C2 and Q=S3xC62

Direct product G=NxQ with N=C2 and Q=S3xC62
dρLabelID
S3xC2xC62144S3xC2xC6^2432,772


Non-split extensions G=N.Q with N=C2 and Q=S3xC62
extensionφ:Q→Aut NdρLabelID
C2.1(S3xC62) = S3xC6xC12central extension (φ=1)144C2.1(S3xC6^2)432,701
C2.2(S3xC62) = Dic3xC62central extension (φ=1)144C2.2(S3xC6^2)432,708
C2.3(S3xC62) = C3xC6xDic6central stem extension (φ=1)144C2.3(S3xC6^2)432,700
C2.4(S3xC62) = C3xC6xD12central stem extension (φ=1)144C2.4(S3xC6^2)432,702
C2.5(S3xC62) = C32xC4oD12central stem extension (φ=1)72C2.5(S3xC6^2)432,703
C2.6(S3xC62) = S3xD4xC32central stem extension (φ=1)72C2.6(S3xC6^2)432,704
C2.7(S3xC62) = C32xD4:2S3central stem extension (φ=1)72C2.7(S3xC6^2)432,705
C2.8(S3xC62) = S3xQ8xC32central stem extension (φ=1)144C2.8(S3xC6^2)432,706
C2.9(S3xC62) = C32xQ8:3S3central stem extension (φ=1)144C2.9(S3xC6^2)432,707
C2.10(S3xC62) = C3xC6xC3:D4central stem extension (φ=1)72C2.10(S3xC6^2)432,709

׿
x
:
Z
F
o
wr
Q
<